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Abstract 
Quantum computing is poised to revolutionize computational mathematics 
by offering exponential speedups for certain classes of problems, notably those 
grounded in linear algebra. Linear algebra is foundational to numerous scientific and 
engineering applications, including solving systems of equations, optimization, and 
machine learning. Quantum algorithms such as the Harrow-Hassidim-Lloyd (HHL) 
algorithm have demonstrated the potential for dramatic improvements over 
classical methods, particularly for large and sparse systems. This article surveys the 
landscape of quantum algorithms for linear algebra, detailing their theoretical 
foundations, practical implementations, and implications for future research and 
technology.
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1. Introduction 
Linear algebra is central to computational science, underpinning tasks such as solving systems of linear equations, eigenvalue 
problems, and matrix decompositions. These problems are ubiquitous in physics, engineering, data analysis, and machine 
learning. Classical algorithms, while powerful, face scaling challenges as data sizes grow. Quantum computing, leveraging 
principles like superposition and entanglement, offers new paradigms for tackling these problems more efficiently. 
Quantum algorithms for linear algebra exploit the ability of quantum systems to represent and manipulate high-dimensional 
vectors and matrices in exponentially compressed forms. This enables certain computations to be performed in time logarithmic 
in the problem size, rather than polynomial or exponential as in classical approaches136. 
 
2. The Role of Linear Algebra in Quantum Computing 
Quantum mechanics itself is formulated in the language of linear algebra: quantum states are vectors in Hilbert space, and 
quantum operations are linear transformations represented by unitary matrices. Quantum gates, the building blocks of quantum 
circuits, are unitary operators acting on qubits5. 
This deep connection means that advances in quantum algorithms often arise from novel applications of linear algebraic 
techniques. Quantum algorithms not only use linear algebra for internal computations but also solve classical linear algebra 
problems more efficiently than their classical counterparts5. 
 
3. Quantum Algorithms for Linear Systems 
3.1 The HHL Algorithm 
The Harrow-Hassidim-Lloyd (HHL) algorithm, introduced in 2009, is a landmark quantum algorithm for solving systems of 
linear equations of the form Ax=bAx=b, where AA is an N×NN×N matrix and bb is a vector13. The classical solution, such as 
Gaussian elimination, requires O(N3)O(N3) time, while iterative methods can reduce this to O(N2)O(N2) for sparse matrices.  
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However, HHL can, under certain conditions, solve the 
problem in time polylogarithmic in NN: 
• Quantum Input: The algorithm assumes the ability to 

efficiently prepare the quantum state ∣b⟩∣b⟩. 
• Sparse and Well-Conditioned Matrices: The 

matrix AA must be sparse (few nonzero entries per row) 
and have a small condition number κκ. 

• Quantum Output: The solution is output as a quantum 
state ∣x⟩∣x⟩ proportional to the solution vector. 

 
The HHL algorithm leverages quantum phase estimation, 
Hamiltonian simulation, and quantum measurement to 
encode and extract information about the solution. For 
matrices meeting the sparsity and conditioning conditions, 
the algorithm achieves exponential speedup over classical 
methods, running in time polynomial in log⁡NlogN, the 
sparsity dd, and κκ1. 
 
3.2 Limitations and Practical Considerations 
While theoretically powerful, the HHL algorithm faces 
several practical challenges: 
• Input/Output Bottleneck: The algorithm operates on 

quantum states, so both the input vector and the solution 
are encoded as quantum states, making it difficult to 
extract the full solution classically without losing the 
speedup. 

• Matrix Restrictions: The requirement for sparsity and a 
low condition number restricts the class of matrices for 
which exponential speedup is achievable. 

• Error and Noise: Quantum computers are susceptible to 
noise and decoherence, which can affect the reliability of 
results. 

 
Despite these limitations, HHL has inspired a new wave of 
research in quantum linear algebra and quantum machine 
learning136. 
 
4. Quantum Algorithms for Matrix Decomposition and 
Eigenvalue Problems 
Matrix decompositions such as eigenvalue decomposition 
and singular value decomposition (SVD) are central to many 
applications, including principal component analysis and 
quantum chemistry simulations. 
Quantum algorithms can estimate eigenvalues and singular 
values using phase estimation and amplitude amplification 
techniques. For example, quantum singular value estimation 
allows for efficient extraction of singular values from 
quantum-encoded matrices, enabling tasks such as low-rank 
approximation and regularized least squares46. 
These algorithms often rely on efficient quantum data 
structures, such as quantum random access memory 
(QRAM), to encode classical data as quantum states. 
Innovations in QRAM architectures have reduced the time 
required to prepare quantum states from classical data, further 
enhancing the practicality of quantum linear algebra 
algorithms46. 
 
5. Quantum Linear Algebra in Machine Learning 
Many machine learning algorithms, including least squares 
regression, principal component analysis, and clustering, are 
fundamentally linear algebraic. Quantum algorithms offer 
speedups for these tasks by enabling: 

• Low-Rank Approximation: Quantum algorithms can 
sample from leverage score distributions, providing 
quadratic speedups for algorithms that rely on 
importance sampling from these distributions46. 

• Quantum Least Squares: Regularized least squares 
problems can be solved efficiently using quantum 
algorithms, with applications in regression and 
classification. 

• Quantum Principal Component Analysis: Quantum 
algorithms can estimate the principal components of 
large datasets exponentially faster than classical 
algorithms, provided the data can be efficiently encoded 
as quantum states. 

 
These advances have led to the emergence of quantum 
machine learning, a field at the intersection of quantum 
computing and data science46. 
 
6. Quantum Error Correction and Stability 
Linear algebra is also crucial in quantum error correction, 
which is necessary for reliable quantum computation. 
Quantum error correction codes, such as surface codes and 
topological codes, rely on linear algebraic principles to 
encode and decode quantum information, protecting against 
errors due to decoherence and noise5. 
Techniques such as diagonalization and similarity transforms 
are used to design and analyze these codes, ensuring that 
quantum information can be stored and processed reliably 
over long periods5. 
 
7. Implementation Challenges and Future Directions 
7.1 Data Encoding 
A major challenge in quantum linear algebra algorithms is the 
efficient encoding of classical data into quantum states. 
QRAM and related architectures are being developed to 
address this bottleneck, but practical, large-scale 
implementations remain a significant engineering 
challenge46. 
 
7.2 Extraction of Classical Information 
Quantum algorithms often produce results as quantum states, 
which must be measured to extract classical information. This 
measurement process can be probabilistic and may require 
repeated runs to obtain accurate estimates, potentially 
offsetting some of the theoretical speedups. 
 
7.3 Hardware Limitations 
Current quantum hardware is limited by the number of qubits, 
gate fidelity, and coherence times. Many quantum linear 
algebra algorithms require deep circuits and error correction, 
which are beyond the capabilities of today’s noisy 
intermediate-scale quantum (NISQ) devices. 
 
7.4 Research Frontiers 
Ongoing research aims to: 
• Broaden the class of matrices and problems for which 

quantum speedups are achievable. 
• Develop hybrid quantum-classical algorithms that 

leverage quantum speedups for subroutines within larger 
classical workflows. 

• Improve error correction and fault tolerance to enable 
reliable large-scale quantum linear algebra 
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computations. 
 
8. Applications and Impact 
Quantum algorithms for linear algebra have the potential to 
transform fields that rely on large-scale data analysis and 
simulation, including: 
• Physics and Chemistry: Simulation of quantum 

systems, electronic structure calculations, and materials 
science. 

• Optimization: Solving large systems of equations 
arising in operations research, logistics, and engineering. 

• Machine Learning: Accelerating training and inference 
for large models, especially in high-dimensional spaces. 

• Cryptography: Quantum algorithms for linear algebra 
underpin some cryptanalytic techniques and may 
influence future cryptographic protocols. 

 
9. Conclusion 
Quantum algorithms for linear algebra represent a promising 
frontier in computational mathematics and quantum 
information science. While significant challenges remain—
particularly in data encoding, error correction, and hardware 
scalability—the theoretical foundations are robust and the 
potential speedups are substantial. As quantum technology 
matures, these algorithms are likely to become central tools 
in scientific computing, data analysis, and beyond. 
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