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Abstract 
Optimal control theory is a cornerstone of modern applied mathematics, providing 
systematic methods for determining control policies that optimize a given performance 
criterion in dynamic systems. When applied to systems governed by differential 
equations, optimal control theory enables the formulation and solution of problems 
ranging from engineering and economics to biology and physics. This article surveys 
the foundational concepts, mathematical formulations, analytical and numerical 
solution techniques, and key applications of optimal control theory in the context of 
differential equations. 
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1. Introduction 
Differential equations are fundamental tools for modeling the evolution of systems in time and space. However, in many real-
world scenarios, we are not merely interested in predicting the system's behavior but in actively influencing it to achieve certain 
goals—such as minimizing fuel consumption in a spacecraft, maximizing profit in an economic system, or steering a chemical 
reaction to a desired outcome. Optimal control theory provides a mathematical framework for determining the best possible 
control actions for such systems5. 
 
2. Formulation of the Optimal Control Problem 
2.1 Dynamical System and Control 
Consider a dynamical system described by a set of (ordinary or partial) differential equations: 
dxdt=f(x(t),u(t),t),x(0)=x0dtdx=f(x(t),u(t),t),x(0)=x0 
where x(t)x(t) is the state vector, u(t)u(t) is the control vector, and ff is a (possibly nonlinear) function describing the system's 
evolution. 
 
2.2 Objective Functional 
The goal is to find a control function u∗(t)u∗(t) that optimizes a performance criterion, typically represented as a cost (or payoff) 
functional: 
J[u(⋅)]=∫0TL(x(t),u(t),t) dt+Φ(x(T))J[u(⋅)]=∫0TL(x(t),u(t),t)dt+Φ(x(T)) 
where LL is the running cost and ΦΦ is the terminal cost45. 
 
2.3 Constraints 
The problem may also include constraints on the state and control variables, such as: 
• Control constraints: u(t)∈Uu(t)∈U 
• State constraints: x(t)∈Xx(t)∈X 
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• Boundary conditions: 
x(0)=x0, x(T)∈XTx(0)=x0,x(T)∈XT 

 
3. Analytical Methods in Optimal Control 
3.1 Pontryagin’s Maximum Principle 
One of the most celebrated results in optimal control theory 
is Pontryagin’s Maximum Principle (PMP), which 
provides necessary conditions for optimality. The principle 
introduces the Hamiltonian: 
H(x,u,λ,t)=L(x,u,t)+λTf(x,u,t)H(x,u,λ,t)=L(x,u,t)+λTf(x,u,t) 
where λ(t)λ(t) is the costate (or adjoint) variable. The PMP 
states that the optimal control u∗(t)u∗(t) must maximize (or 
minimize) the Hamiltonian at each instant, subject to the 
system dynamics and boundary conditions45. 
 
3.2 Dynamic Programming and the Hamilton–Jacobi–
Bellman Equation 
Dynamic programming, pioneered by Bellman, provides an 
alternative approach by formulating the Hamilton–Jacobi–
Bellman (HJB) equation, a nonlinear partial differential 
equation whose solution yields the optimal value function. 
The HJB equation is: 
∂V∂t+min⁡u∈U{L(x,u,t)+∂V∂xf(x,u,t)}=0∂t∂V+u∈Umin{
L(x,u,t)+∂x∂Vf(x,u,t)}=0 
with terminal condition V(x,T)=Φ(x)V(x,T)=Φ(x). The 
optimal control is then obtained by minimizing the right-hand 
side of the HJB equation4. 
 
3.3 Linear Quadratic Regulator (LQR) 
For linear systems with quadratic cost, the LQR 
problem admits an explicit solution. The optimal control law 
is linear in the state: 
u∗(t)=−K(t)x(t)u∗(t)=−K(t)x(t) 
where K(t)K(t) is computed via the solution to the Riccati 
differential equation 5. 
 
4. Numerical Methods for Optimal Control 
Most real-world optimal control problems are nonlinear and 
lack closed-form solutions. Thus, numerical methods are 
essential. 
 
4.1 Indirect Methods 
Indirect methods derive the necessary conditions for 
optimality (e.g., from PMP), resulting in a boundary value 
problem for the state and costate equations. These are solved 
numerically, often using shooting methods or collocation 
techniques5. 
 
4.2 Direct Methods 
Direct methods discretize the control and state trajectories, 
transforming the problem into a nonlinear programming 
problem. The Theory of Consistent 
Approximations ensures convergence of the discretized 
solution to the continuous-time problem under suitable 
conditions5. 
 
4.3 Discrete-Time Optimal Control 
With the prevalence of digital controllers, discrete-time 
formulations are common. The problem is posed for systems 
evolving in discrete steps, and similar principles (PMP, HJB) 
apply, though the equations are difference rather than 
differential equations5. 

5. Optimal Control for Partial Differential Equations 
(PDEs) 
While much of classical optimal control theory focuses on 
ordinary differential equations (ODEs), many systems (e.g., 
heat conduction, fluid flow, population dynamics) are 
modeled by partial differential equations (PDEs). Here, the 
control may be distributed in space and time (e.g., heating 
distributed throughout a rod). 
Existence and regularity results for optimal controls in PDE 
systems are more complex, often requiring advanced 
functional analysis. Numerical methods such as finite 
element or finite difference schemes are used to approximate 
the PDEs and solve the control problem21. 
 
6. Applications 
Optimal control theory has wide-ranging applications: 
• Engineering: Trajectory optimization for spacecraft, 

robotics, chemical reactors, and process control5. 
• Economics: Optimal investment, consumption, and 

resource allocation policies5. 
• Biology: Population management, epidemiology, and 

drug dosage optimization. 
• Operations Research: Inventory control, supply chain 

management, and logistics5. 
• Environmental Science: Pollution control and resource 

management. 
 
A classic example is the minimal-time problem, where the 
goal is to steer a system from an initial state to a target state 
in the shortest possible time, subject to system dynamics and 
constraints4. 
 
7. Challenges and Research Directions 
7.1 Nonlinear and Stochastic Systems 
Many real-world systems are nonlinear or subject to random 
disturbances. Stochastic optimal control extends the theory 
to systems governed by stochastic differential equations, 
using tools such as Itô calculus and stochastic versions of the 
HJB equation4. 
 
7.2 High-Dimensional and Complex Systems 
As systems grow in complexity and dimensionality, 
computational challenges arise. Advances in numerical 
optimization, high-performance computing, and machine 
learning are increasingly integrated with optimal control to 
handle such problems16. 
 
7.3 Game Theory and Differential Games 
In multi-agent settings, differential games generalize optimal 
control to competitive or cooperative scenarios, leading to 
Nash equilibria or saddle-point solutions4. 
 
8. Conclusion 
Optimal control theory provides a powerful and versatile 
framework for influencing the behavior of dynamic systems 
governed by differential equations. Through analytical and 
numerical methods, it enables the systematic design of 
control policies that optimize performance in a wide variety 
of scientific, engineering, and economic contexts. Ongoing 
research continues to expand its reach to more complex, 
nonlinear, and stochastic systems, ensuring its central role in 
the future of applied mathematics and systems engineering. 
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