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1. Introduction

Genetic algorithms are a type of evolutionary research approach that has found widespread use in tackling complex optimization
issues across many different industries [ These algorithms are motivated by the notion of natural evolution. Using the tenets
of natural selection, reproduction, and mutations, these algorithms build a population of potential solutions (individuals) [,
While genetic algorithms have shown effective in numerous domains, they do encounter certain obstacles, such as sluggish
convergence, slipping into locally optimal solutions, and trouble with parameter tuning 1. However, for dynamic system routing
and resource transfer, respectively, the optimal control theory and the optimal transport theory give robust mathematical
foundations [,

In order to better solve complicated optimization problems, this research article will investigate the potential of combining
genetic algorithms with the ideas of optimum control and optimal transfer I,

1.1. genetic algorithms

Genetic algorithms are evolutionary methodologies that simulate the mechanisms of natural selection. The algorithm initiates
with a collection of potential solutions (population) and executes a sequence of operations: selection, crossover, and mutation,
with the objective of enhancing solution quality via succeeding generations [6.71,

The conventional genetic algorithm's fundamental steps are:

« Initialization is the process of randomly generating an initial population of potential solutions, or chromosomes.

« Evaluation: the determination of each population member's fitness value.

« Selection: the process of choosing the best candidates for reproduction.

« Mating is the process by which the genetic traits of the chosen parents are combined to create new individuals, or
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offspring.

« Making minor, arbitrary modifications to certain people
is called mutation.

« Replacement: bringing in new people to replace a
portion of the current population.

e Steps 2 through 6 should be repeated until the Stop
condition is met.

1.2. optimal transport theory

The optimal transfer theory, developed by the French
mathematician Gaspard Monge, seeks to find the cheapest
way to move mass from one probability distribution to
another. We aim to determine the transport plan y that does
the following in the mathematical formulation, given two
probability distributions p and V [7-8l;

Lun Jxxy €6, y)dy (x,y)

where,
e I'(wV)is the set of all possible transport plans that
convertsuto V.
e ¢ (x,y) is acost function that represents the cost of
moving a unit of mass from Point x to point Y.

The Wasserstein distance, a robust mathematical tool for
comparing distributions, is provided by optimal transport
theory.

1.3. Optimal Control Theory

The goal of optimal control theory is to maximize (or
minimize) a target function by identifying the control signals
that move a dynamical system from an initial state to a final
one. The optimal control problem is generally stated as
follows [ 101;

min () = [;7 LG(®), u(®), Ot + p(x(tp), &)
Constraints
x(t) = f(x(@®),u(®),t)

x(to) = xo

where,

e x(t) is the state of the system.

e u(t) are the control variables.

« L isthe instantaneous cost function.

e ¢ isafunction of the final cost.

« fisafunction that describes the dynamics of a system.

1.4. integration of optimal transfer and optimal control of

genetic algorithms

We suggest a comprehensive framework that incorporates the

theories of optimal transmission and optimal control of

genetic algorithms. The frame is composed of two primary

components 1% 121;

1. Optimal transfer in mating and crossing processes:
employing the principles of optimal transfer to enhance
mating processes by conceptualizing chromosomes as
probability distributions and endeavoring to transfer the
"genetic mass" at minimal cost.
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2. Optimal regulation of the research process orientation:
employing optimal control theory to direct the research
process and modify algorithm parameters (such as
mating and mutation rates) across generations, by
representing population development as a dynamic
system.

1.4.1. Optimal Transportation in Mating and Crossing
Processes

In conventional genetic algorithms, the mating (crossover)
process occurs in a predominantly stochastic manner,
potentially resulting in the loss of critical information or the
fragmentation of beneficial genetic configurations 13141, We
propose employing optimal transportation principles to
enhance the mating process.

We regard each chromosome as a probability distribution
throughout the gene space and create a cost function
c(x,y) that quantifies the "cost" of relocating a gene from
position x in the first chromosome to place y in the second
chromosome. This cost can be determined by metrics of
distance within the problem space or by metrics of similarity
among genes.

Upon defining the cost function, we address the optimal
transfer problem to derive a y transfer plan, which specifies
the gene combination from parental chromosomes to generate
daughter chromosomes.  This method guarantees the
maintenance of beneficial genetic configurations and
diversity within the population.

1.4.2. Optimal Control Over the Direction of the Search

Process

Using a genetic algorithm to model population evolution as a

dynamic system, where [15 16I;

« The state variables x(t) represents the distribution of the
population in generation T.

« Control variables u(t) represent the parameters of the
algorithm (mating and mutation rates, selection
strategies, etc.).

o The dynamics of system f describes how a population
evolves from one generation to another.

e The objective function J represents the quality of
solutions and the diversity in the population.

We find the best control strategy u*(t) that makes the
algorithm work as well as possible by applying the optimal
control theorem. By adjusting the algorithm parameters in
real-time according to the search state, this method makes the
search more efficient and prevents the algorithm from getting
stuck in local optimal solutions.

2. Proposed Methodology

2.1. Optimized Genetic Algorithm with Optimal Transfer
and Optimal Control (OTCGA)

An enhanced genetic algorithm is presented, which
incorporates the principles of optimal transport alongside the
Control-enhanced Genetic Algorithm (OTCGA). The
procedure is comprised of the subsequent steps:

1. Configuration:

o Create an initial population P, of N individuals
randomly.

« Initialization of the initial control parameters u, (mating
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and mutation rates, selection strategies).

2. Key Ring: for Each Generationt=0, 1, 2, ...
« Evaluation: calculation of the fitness value f(x) for
each individual x € P,.
« Research status analysis: calculation of research status
indicators (average fitness, best fitness, diversity in the
population).
e Adjust control parameters: update u.,,; control
parameters based on the optimal control model.
« Selection: selection of the parent group S from P, using
the selected selection strategy.
e  Optimized transfer-optimized mating: for each pair of
parents (x,y) € S:
> Representation of chromosomes as probability
distributions.

> Definition of the cost function c(i,j) based on
measures of distance or similarity.

» Solve the optimal transport problem to obtain the
transport plan y.

»  Production of offspring using the transport plan y.

« Mutation: performing mutations on children at the
specified mutation rate.

e Replacement: replacement of part of the existing
population with new ones.

« Redundancy: transition to the next generation t + 1.

3. Stop condition: stop when the maximum number of
generations is reached or when the best solution for a
certain number of generations is not optimized.

2.2. Details of Optimal Transportation in the Mating

Process

To implement the optimal transfer in the mating process, we

adhere to these steps:

« Chromosome representation: we represent the parental X
and y chromosomes as the p and V probability
distributions over the gene space.

« Definition of the cost function: we define the cost
function c(i, j), which represents the cost of transferring
a gene from position ion the first chromosome to
position j on the second chromosome. This cost can be
defined in different ways depending on the nature of the
problem:

» Geometric distance: ¢ (i,j) = |i —j| (distance
between gene sites).

» Functional similarity: c(i,j) = d(x,y)
(measure of similarity between gene values).

» Influence on fitness: c(i,j) depends on the
influence of genes on the value of fitness.

« Solving the optimal transport problem: we solve the
optimal transport problem to obtain a transport plan y
that achieves:

Jomin (L )y (L))
The issue can be addressed through the application of optimal
transfer algorithms, including the Hungarian algorithm and
the Sinkhorn algorithm.

www.mathresearchjournal.com

e In order to generate kids, we employ the y transfer plan,
in which genes are chosen from the paternal
chromosomes according to the values of y (i, ).

2.3. Details of Optimal Control of Search Routing

We take these procedures to impose optimal control on the

search orientation:

1. Modeling population dynamics: modeling the
evolution of a population as a dynamic system

Xep1 = [ (X Upy t)

where,

e x, is the distribution of the population in generation T.

e u, are the control parameters (mating and mutation rates,
selection strategies).

« fis a function that describes how a population evolves
from one generation to another.

2. Definition of the objective function: we define the
objective function J that we seek to maximize

J@) = Eizolwi foese () + w2 D(£) — waC(u)]

where,

e fiese(t) IS the best fitness value in generation T.

e D(t) is ameasure of diversity in a population.

e C(uy) is the cost of using u, control parameters.

e w;,w,,ws are weights that determine the importance of
each component.

3. Solving the optimal control problem: we solve the
optimal control problem to find the optimal control parameter
string {uj,u3,...,ur} which maximizes the objective
function J.

4. Update control parameters: in each generation t, we
update the control parameters u, based on the solution of the
optimal control problem and the current state of research.

3. Result and discusses

We implemented the proposed approach (OTCGA) across
four case studies in various domains and evaluated its
efficacy against the classic genetic algorithm (SGA) and
other enhanced genetic algorithms.

Case Study 1: Production Scheduling

« The challenge is to reduce the overall production time
(makes pan) by scheduling the production of n tasks on
m machines.

« Data: We used a dataset of five computers and twenty
tasks, each of which had a distinct processing time.

e Our representation method was the priority list
representation, in which each chromosome stands for a
task order.

o Results: Table 1 compares several algorithms based on
the number of generations needed for convergence and
the average overall production time (makes pan).
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Table 1: comparison of the performance of algorithms in the

production scheduling problem

Average total Number of .
The e - Calculation
. production time| generations for | ..
algorithm - time (seconds)
(min) convergence
SGA 487.5 142 18.3

NSGA-II 462.3 118 22.7
OTCGA 438.7 85 25.1

Case Study 2: transport network design
« The challenge is to construct a transmission network that

www.mathresearchjournal.com
connects n sites while maximizing network
dependability and lowering overall costs.

Data: We used a 30-point dataset that included cost and
distance matrices.

Each chromosome serves as a representation of the
network connections in the adjacency matrix model that
we employed.

Results: A comparison of various algorithms' optimal
solutions in the multi-objective space (cost versus
dependability) is displayed in Figure 1.
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Fig 1: comparison of optimal solutions in the multi-objective space (Cost vs. reliability) for the problem of designing networks

Describe the figure

In this graphic, we can see how various algorithms fare when
it comes to developing transport networks in the context of
the multi-objective space and the best solutions (Pareto
front). Total network cost (which should be minimized) and
network dependability (which should be maximized) are
depicted by the horizontal and vertical axes, respectively.
There is a perfect compromise between the two objectives at
each of these points. It is demonstrated that the suggested
algorithm (OTCGA) outperforms other algorithms in terms
of Pareto front achieving, indicating its potential to discover
more reliable and cost-effective solutions.

Case Study 3: resource allocation in cloud computing

systems

« The challenge is to distribute n jobs across m servers in
a cloud computing environment while minimizing
latency and balancing load.

o Data: We used a dataset with 20 servers and 100
workloads with varying CPU, RAM, and bandwidth
requirements.

« Representation: we employed the direct encoding
representation, in which the task's allocated server
number is represented by each gene.

Results: A comparison of several algorithms' response
times and load balance indices is displayed in Table 2.

Table 2: comparison of the performance of algorithms in the
resource allocation problem

The resﬁgﬁgzgi?me Load balance Resource
algorithm (Ms) index (0-1) | utilization (%0)
SGA 245.3 0.72 68.5
ACO 232.1 0.76 71.2
PSO 228.5 0.75 72.8
OTCGA 213.7 0.83 78.4

Case study 4: improving investment portfolios

Finding the weights of n assets in an investment portfolio
while minimizing risk and increasing expected return is
the challenge.

Data: For five years, we used historical data for fifty
stocks that were listed on the stock exchange.
Representation: we employed the real-valued
representation, in which the weight of each gene
corresponds to the asset's weight in the portfolio.
Results: Using a variety of algorithms, Figure 2
illustrates how the ideal investment portfolio changes
over time.
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Fig 2: optimal investment portfolio evolution over time using various algorithms

Describe of figure

This graph illustrates the progression of optimal investment
portfolio performance over a five-year period utilizing
multiple methods. The horizontal axis denotes time (in
months), while the vertical axis indicates the portfolio value,
standardized so that all portfolios commence with a value of
100. An optimized portfolio utilizing OTCGA demonstrates
superior and more consistent performance throughout the test
period, particularly during phases of market volatility (e.g.,
months 30-36). This illustrates the proposed algorithm's
capacity to identify more resilient and stable asset
distributions across diverse market conditions.

4. Conclusion

Following are some of the conclusions that can be reached

through the examination of the outcomes of case studies:

« The efficacy of the integrated approach: case study
findings have demonstrated the usefulness of the
integrated methodology that combines the theories of
optimal transfer and optimal control within genetic
algorithms.

e  The proposed methodology (OTCGA) has significantly
enhanced solution quality and convergence speed
relative to conventional genetic algorithms.

e The results indicated that the integration of optimal
transmission and optimal control vyields superior
outcomes compared to utilizing each component
independently.

«  The methodology has demonstrated its relevance to
many optimization issues across multiple fields.

8]
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