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Abstract 

This research introduces a cohesive framework that amalgamates the ideas of optimum 

transfer and optimal control inside genetic algorithms, aimed at enhancing 

methodologies for addressing intricate optimization challenges.  The proposed 

framework utilizes optimum transfer ideas to enhance mating and crossing processes 

in genetic algorithms, leveraging optimal control theory to direct the search process 

and modify algorithm parameters over generations.  The proposed methodology was 

implemented in four distinct case studies: production scheduling, transport network 

design, resource allocation in cloud computing systems, and investment portfolio 

optimization.  The findings demonstrated the superiority of the suggested 

methodology compared to typical genetic algorithms for solution quality, convergence 

speed, and the capacity to evade local optima.  An exhaustive evaluation of 

computational performance and efficiency was provided, along with suggestions for 

the methodology's application in additional domains and its prospective advancement. 
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1. Introduction 

Genetic algorithms are a type of evolutionary research approach that has found widespread use in tackling complex optimization 

issues across many different industries [1]. These algorithms are motivated by the notion of natural evolution.  Using the tenets 

of natural selection, reproduction, and mutations, these algorithms build a population of potential solutions (individuals) [2]. 

 While genetic algorithms have shown effective in numerous domains, they do encounter certain obstacles, such as sluggish 

convergence, slipping into locally optimal solutions, and trouble with parameter tuning [3].  However, for dynamic system routing 

and resource transfer, respectively, the optimal control theory and the optimal transport theory give robust mathematical 

foundations [4]. 
In order to better solve complicated optimization problems, this research article will investigate the potential of combining 

genetic algorithms with the ideas of optimum control and optimal transfer [5].   

 
1.1. genetic algorithms 
Genetic algorithms are evolutionary methodologies that simulate the mechanisms of natural selection.  The algorithm initiates 

with a collection of potential solutions (population) and executes a sequence of operations: selection, crossover, and mutation, 

with the objective of enhancing solution quality via succeeding generations [6, 7]. 
The conventional genetic algorithm's fundamental steps are: 
• Initialization is the process of randomly generating an initial population of potential solutions, or chromosomes. 

• Evaluation: the determination of each population member's fitness value. 

• Selection: the process of choosing the best candidates for reproduction. 

• Mating is the process by which the genetic traits of the chosen parents are combined to create new individuals, or 
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offspring. 

• Making minor, arbitrary modifications to certain people 

is called mutation. 

• Replacement: bringing in new people to replace a 

portion of the current population. 

• Steps 2 through 6 should be repeated until the Stop 

condition is met. 

 

1.2. optimal transport theory 
The optimal transfer theory, developed by the French 

mathematician Gaspard Monge, seeks to find the cheapest 

way to move mass from one probability distribution to 

another.  We aim to determine the transport plan 𝛾 that does 

the following in the mathematical formulation, given two 

probability distributions 𝜇 and 𝑉 [7, 8]: 
 

 min
𝛾∈𝛤(𝜇,𝑉)

ʃ𝑋×𝑌 𝑐(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦)  

 

where, 

• 𝛤 (µ, 𝑉) is the set of all possible transport plans that 

converts 𝜇 to 𝑉. 

• 𝑐 (𝑥, 𝑦) is a cost function that represents the cost of 

moving a unit of mass from Point 𝑥 to point 𝑌. 

 

The Wasserstein distance, a robust mathematical tool for 

comparing distributions, is provided by optimal transport 

theory. 

 

1.3. Optimal Control Theory 

The goal of optimal control theory is to maximize (or 

minimize) a target function by identifying the control signals 

that move a dynamical system from an initial state to a final 

one.  The optimal control problem is generally stated as 

follows [9, 10]: 

 

 min
𝑢(.)

𝐽(𝑢) = ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 + 𝜑(𝑥(𝑡𝑓), 𝑡𝑓)
𝑡𝑓

𝑡0

  

Constraints 

 

ẋ(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) 

 

𝑥(𝑡0) = 𝑥0 

 

where, 

• 𝑥 (𝑡) is the state of the system. 

• 𝑢(𝑡) are the control variables. 

• 𝐿 is the instantaneous cost function. 

• 𝜑 is a function of the final cost. 

• 𝑓 is a function that describes the dynamics of a system. 

 

1.4. integration of optimal transfer and optimal control of 

genetic algorithms 

We suggest a comprehensive framework that incorporates the 

theories of optimal transmission and optimal control of 

genetic algorithms.  The frame is composed of two primary 

components [11, 12]: 

1. Optimal transfer in mating and crossing processes: 

employing the principles of optimal transfer to enhance 

mating processes by conceptualizing chromosomes as 

probability distributions and endeavoring to transfer the 

"genetic mass" at minimal cost. 

2.  Optimal regulation of the research process orientation: 

employing optimal control theory to direct the research 

process and modify algorithm parameters (such as 

mating and mutation rates) across generations, by 

representing population development as a dynamic 

system. 

 

1.4.1. Optimal Transportation in Mating and Crossing 

Processes 

In conventional genetic algorithms, the mating (crossover) 

process occurs in a predominantly stochastic manner, 

potentially resulting in the loss of critical information or the 

fragmentation of beneficial genetic configurations [13, 14].  We 

propose employing optimal transportation principles to 

enhance the mating process. 

 We regard each chromosome as a probability distribution 

throughout the gene space and create a cost function 

𝑐(𝑥, 𝑦) that quantifies the "cost" of relocating a gene from 

position x in the first chromosome to place y in the second 

chromosome.  This cost can be determined by metrics of 

distance within the problem space or by metrics of similarity 

among genes. 

 Upon defining the cost function, we address the optimal 

transfer problem to derive a γ transfer plan, which specifies 

the gene combination from parental chromosomes to generate 

daughter chromosomes.  This method guarantees the 

maintenance of beneficial genetic configurations and 

diversity within the population. 

 

1.4.2. Optimal Control Over the Direction of the Search 

Process 

Using a genetic algorithm to model population evolution as a 

dynamic system, where [15, 16]: 

• The state variables 𝑥(𝑡) represents the distribution of the 

population in generation 𝑇. 

• Control variables 𝑢(𝑡) represent the parameters of the 

algorithm (mating and mutation rates, selection 

strategies, etc.). 

• The dynamics of system 𝑓 describes how a population 

evolves from one generation to another. 

• The objective function 𝐽 represents the quality of 

solutions and the diversity in the population. 

 

We find the best control strategy 𝑢∗(𝑡) that makes the 

algorithm work as well as possible by applying the optimal 

control theorem.  By adjusting the algorithm parameters in 

real-time according to the search state, this method makes the 

search more efficient and prevents the algorithm from getting 

stuck in local optimal solutions. 

 

2. Proposed Methodology 

2.1. Optimized Genetic Algorithm with Optimal Transfer 

and Optimal Control (OTCGA) 

An enhanced genetic algorithm is presented, which 

incorporates the principles of optimal transport alongside the 

Control-enhanced Genetic Algorithm (OTCGA).  The 

procedure is comprised of the subsequent steps: 

 

1. Configuration: 

• Create an initial population 𝑃0 of 𝑁 individuals 

randomly. 

• Initialization of the initial control parameters 𝑢0 (mating 
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and mutation rates, selection strategies). 

 

2. Key Ring: for Each Generation t = 0, 1, 2, ... 

• Evaluation: calculation of the fitness value 𝑓(𝑥) for 

each individual 𝑥 ∈ 𝑃𝑡. 

• Research status analysis: calculation of research status 

indicators (average fitness, best fitness, diversity in the 

population). 

• Adjust control parameters: update 𝑢𝑡+1 control 

parameters based on the optimal control model. 

• Selection: selection of the parent group S from 𝑃𝑡 using 

the selected selection strategy. 

• Optimized transfer-optimized mating: for each pair of 

parents (𝑥, 𝑦)  ∈ 𝑆: 

➢ Representation of chromosomes as probability 

distributions. 

➢ Definition of the cost function 𝑐(𝑖, 𝑗) based on 

measures of distance or similarity. 

➢ Solve the optimal transport problem to obtain the 

transport plan 𝛾. 

➢ Production of offspring using the transport plan 𝛾. 

• Mutation: performing mutations on children at the 

specified mutation rate. 

• Replacement: replacement of part of the existing 

population with new ones. 

• Redundancy: transition to the next generation 𝑡 + 1. 

 

3. Stop condition: stop when the maximum number of 

generations is reached or when the best solution for a 

certain number of generations is not optimized. 

 

2.2. Details of Optimal Transportation in the Mating 

Process 

To implement the optimal transfer in the mating process, we 

adhere to these steps: 

• Chromosome representation: we represent the parental 𝑋 

and 𝑦 chromosomes as the µ and 𝑉 probability 

distributions over the gene space. 

• Definition of the cost function: we define the cost 

function 𝑐(𝑖, 𝑗), which represents the cost of transferring 

a gene from position 𝑖 on the first chromosome to 

position 𝑗 on the second chromosome. This cost can be 

defined in different ways depending on the nature of the 

problem: 

➢ Geometric distance: 𝑐 (𝑖, 𝑗)  =  |𝑖 − 𝑗| (distance 

between gene sites). 

➢ Functional similarity: 𝑐(𝑖, 𝑗)  =  𝑑 (𝑥𝑖 , 𝑦𝑖) 

(measure of similarity between gene values). 

➢ Influence on fitness: 𝑐(𝑖, 𝑗) depends on the 

influence of genes on the value of fitness. 

• Solving the optimal transport problem: we solve the 

optimal transport problem to obtain a transport plan γ 

that achieves:  

 

 min
𝛾∈𝛤(𝜇,𝑉)

∑ 𝑐(𝑖, 𝑗)𝛾(𝑖, 𝑗𝑖,𝑗 )  

  

The issue can be addressed through the application of optimal 

transfer algorithms, including the Hungarian algorithm and 

the Sinkhorn algorithm. 

• In order to generate kids, we employ the γ transfer plan, 

in which genes are chosen from the paternal 

chromosomes according to the values of 𝛾 (𝑖, 𝑗). 
 

2.3. Details of Optimal Control of Search Routing 

We take these procedures to impose optimal control on the 

search orientation: 

1. Modeling population dynamics: modeling the 

evolution of a population as a dynamic system 

 

 𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡 , 𝑡)  

 

where,  

• 𝑥𝑡 is the distribution of the population in generation 𝑇. 

• 𝑢𝑡 are the control parameters (mating and mutation rates, 

selection strategies). 

• 𝑓 is a function that describes how a population evolves 

from one generation to another. 

 

2. Definition of the objective function: we define the 

objective function J that we seek to maximize 

 

𝐽(𝑢) = ∑ [𝑤1𝑓𝑏𝑒𝑠𝑡(𝑡) + 𝑤2𝐷(𝑡)  − 𝑤3𝐶(𝑢𝑡)]𝑇
𝑡=0   

  

where, 

• 𝑓𝑏𝑒𝑠𝑡(𝑡) is the best fitness value in generation 𝑇. 

• 𝐷(𝑡) is a measure of diversity in a population. 

• 𝐶(𝑢𝑡) is the cost of using 𝑢𝑡 control parameters. 

• 𝑤1, 𝑤2, 𝑤3 are weights that determine the importance of 

each component. 

 

3. Solving the optimal control problem: we solve the 

optimal control problem to find the optimal control parameter 

string {𝑢1
∗, 𝑢2

∗ , . . . , 𝑢𝑇
∗ } which maximizes the objective 

function 𝐽. 

 

4. Update control parameters: in each generation 𝑡, we 

update the control parameters 𝑢𝑡 based on the solution of the 

optimal control problem and the current state of research. 

 

3. Result and discusses  

We implemented the proposed approach (OTCGA) across 

four case studies in various domains and evaluated its 

efficacy against the classic genetic algorithm (SGA) and 

other enhanced genetic algorithms. 

 

Case Study 1: Production Scheduling 

• The challenge is to reduce the overall production time 

(makes pan) by scheduling the production of n tasks on 

m machines. 

•  Data: We used a dataset of five computers and twenty 

tasks, each of which had a distinct processing time. 

•  Our representation method was the priority list 

representation, in which each chromosome stands for a 

task order. 

•  Results: Table 1 compares several algorithms based on 

the number of generations needed for convergence and 

the average overall production time (makes pan). 
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Table 1: comparison of the performance of algorithms in the 

production scheduling problem 
 

The 

algorithm 

Average total 

production time 

(min) 

Number of 

generations for 

convergence 

Calculation 

time (seconds) 

SGA 487.5 142 18.3 

NSGA-II 462.3 118 22.7 

OTCGA 438.7 85 25.1 

 

Case Study 2: transport network design 

• The challenge is to construct a transmission network that 

connects n sites while maximizing network 

dependability and lowering overall costs. 

•  Data: We used a 30-point dataset that included cost and 

distance matrices. 

•  Each chromosome serves as a representation of the 

network connections in the adjacency matrix model that 

we employed. 

•  Results: A comparison of various algorithms' optimal 

solutions in the multi-objective space (cost versus 

dependability) is displayed in Figure 1. 

 

 
 

Fig 1: comparison of optimal solutions in the multi-objective space (Cost vs. reliability) for the problem of designing networks 

 

Describe the figure  

In this graphic, we can see how various algorithms fare when 

it comes to developing transport networks in the context of 

the multi-objective space and the best solutions (Pareto 

front).  Total network cost (which should be minimized) and 

network dependability (which should be maximized) are 

depicted by the horizontal and vertical axes, respectively.  

There is a perfect compromise between the two objectives at 

each of these points.  It is demonstrated that the suggested 

algorithm (OTCGA) outperforms other algorithms in terms 

of Pareto front achieving, indicating its potential to discover 

more reliable and cost-effective solutions. 

 

Case Study 3: resource allocation in cloud computing 

systems 

• The challenge is to distribute n jobs across m servers in 

a cloud computing environment while minimizing 

latency and balancing load. 

• Data: We used a dataset with 20 servers and 100 

workloads with varying CPU, RAM, and bandwidth 

requirements. 

• Representation: we employed the direct encoding 

representation, in which the task's allocated server 

number is represented by each gene. 

 

• Results: A comparison of several algorithms' response 

times and load balance indices is displayed in Table 2. 
 

Table 2: comparison of the performance of algorithms in the 

resource allocation problem 
 

The 

algorithm 

Average 

response time 

(Ms) 

Load balance 

index (0-1) 

Resource 

utilization (%) 

SGA 245.3 0.72 68.5 

ACO 232.1 0.76 71.2 

PSO 228.5 0.75 72.8 

OTCGA 213.7 0.83 78.4 

 

Case study 4: improving investment portfolios 

• Finding the weights of n assets in an investment portfolio 

while minimizing risk and increasing expected return is 

the challenge. 

• Data: For five years, we used historical data for fifty 

stocks that were listed on the stock exchange. 

• Representation: we employed the real-valued 

representation, in which the weight of each gene 

corresponds to the asset's weight in the portfolio. 

• Results: Using a variety of algorithms, Figure 2 

illustrates how the ideal investment portfolio changes 

over time. 
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Fig 2: optimal investment portfolio evolution over time using various algorithms 

 

Describe of figure 

This graph illustrates the progression of optimal investment 

portfolio performance over a five-year period utilizing 

multiple methods.  The horizontal axis denotes time (in 

months), while the vertical axis indicates the portfolio value, 

standardized so that all portfolios commence with a value of 

100.  An optimized portfolio utilizing OTCGA demonstrates 

superior and more consistent performance throughout the test 

period, particularly during phases of market volatility (e.g., 

months 30-36).  This illustrates the proposed algorithm's 

capacity to identify more resilient and stable asset 

distributions across diverse market conditions. 

 

4. Conclusion 

Following are some of the conclusions that can be reached 

through the examination of the outcomes of case studies: 

• The efficacy of the integrated approach: case study 

findings have demonstrated the usefulness of the 

integrated methodology that combines the theories of 

optimal transfer and optimal control within genetic 

algorithms. 

•  The proposed methodology (OTCGA) has significantly 

enhanced solution quality and convergence speed 

relative to conventional genetic algorithms. 

•  The results indicated that the integration of optimal 

transmission and optimal control yields superior 

outcomes compared to utilizing each component 

independently. 

•  The methodology has demonstrated its relevance to 

many optimization issues across multiple fields. 
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